Physica D 472 (2025) 134526

journal homepage: www.elsevier.com/locate/physd —_—

Contents lists available at ScienceDirect

PhysicaD

Check for

Soliton resolution and asymptotic stability of N-soliton solutions for the
defocusing mKdV equation with a non-vanishing background

Zechuan Zhang'” *, Taiyang Xu'”, Engui Fan

School of Mathematical Sciences, Fudan University, Shanghai 200433, PR China

ARTICLE INFO ABSTRACT

Communicated by Feng Bao-Feng

MSC:

35Q51
35Q15
35C20
37K15
37K40

Keywords:

The defocusing mKdV equation
Riemann-Hilbert problem

0 steepest descent method
Large-time asymptotics
Asymptotic stability

Soliton resolution

We analytically study the large-time asymptotics of the solution of the defocusing modified Korteweg-de Vries
(mKdV) equation under a symmetric non-vanishing background, which supports the emergence of solitons. It
is demonstrated that the asymptotic expansion of the solution at the large time could verify the renowned
soliton resolution conjecture. Moreover, the asymptotic stability of N-soliton solution is also exhibited in the
present work. We establish our results by performing a d-nonlinear steepest descent analysis to the associated
Riemann-Hilbert (RH) problem.

1. Introduction

We investigate the Cauchy problem for the defocusing modified
Korteweg—de Vries (mKdV) equation with finite density initial data

406 1) + G (6, 1) = 66°(x, g (x,1) =0,  (x,1) € RxRY, 1.1)

q(x,0) = go(x) = =1, x — +oo. (1.2)

Let lim,_ . go(x) = g,. Note that, if g, = +A as x — +oo, one can
always reduce oneself to either A = 1 or A = —1 without loss of
generality thanks to scaling invariance of mKdV equation. Indeed, one
can make u = A~'q, ¥ = Ax and 7 = A%, it is consequent that u(X,7)
satisfies (1.1) with the normalized boundary condition uy(%) — =+l
as X — =+oo. Note also that the case g, = FI is trivially reduced to
the present one thanks to the invariance of the mKdV equation under
change of sign [i.e., the transformation g(x, ) —» —u(x,?) ].

The mKdV equation arises in various physical fields, such as acoustic
wave and phonons in a certain anharmonic lattice [1,2], Alfén wave
in a cold collision-free plasma [3], meandering ocean currents [4],
hyperbolic surfaces [5], and Schottky barrier transmission [6]. There
are plenty of results on the mathematical properties for the mKdV
equation. Here we cite only those that are closed to our study. In the

* Corresponding author.

late 1970s, the inverse scattering theory was applied to solve the mKdV
equation and investigate large-time asymptotics for the mKdV equation.
For example, Wadati investigated the focusing mKdV equation with
zero boundary conditions and derived simple-pole, double-pole and
triple-pole solutions [7,8]. The long-time behavior of the defocusing
mKdV equation with given Schwartz initial data is provided by Segur
and Ablowitz without consideration of solitons [9]. Deift and Zhou
developed nonlinear steepest descent method and obtained the long-
time asymptotic behavior of the defocusing mKdV equation with the
Schwartz initial data in their seminal work [10]. This approach was
further developed into a d steepest descent method by McLaughlin
and Miller to analyze asymptotics of orthogonal polynomials with
non-analytical weights [11,12]. Later, with Dieng, they applied it to
investigate the defocusing NLS equation under essentially minimal
regularity assumptions on finite mass initial data [13]. Boutet de Mon-
vel et al. discussed the initial boundary value problem of defocusing
mKdV equation on the half line by using the Fokas method [14]. For
the weighted Sobolev initial data, Chen and Liu et al. have studied
the large-time asymptotic behavior of defocusing mKdV equation with
zero boundary conditions without consideration of solitons [15], and
the long-time asymptotic behavior of focusing mKdV equation with
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Fig. 1. The (x,7)-plane is divided into three kinds of asymptotic regions: Solitonic region, —6 < & < —2; Solitonless region, ¢ < —6 and & > —2; Transition region, ¢ ~ —6. Here,

& i=x/t.

zero boundary conditions with solitons [16]. However, for defocusing
mKdV equation with nonzero boundary conditions, soliton solutions
will appear due to non-empty discrete spectrum for finite mass initial
data. It is necessary to consider the effect of soliton solutions when we
study large-time asymptotic behavior, which naturally require a more
detailed necessary description to obtain the large-time asymptotics of
the defocusing mKdV equation.

Our goal in this paper is to give detailed asymptotic analysis for the
defocusing mKdV equation (1.1) with finite density type initial data in
the given space-time solitonic regions |x/r + 4| < 2; see Fig. 1 for an
illustration.

We investigate the asymptotic stability and soliton resolution for
the mKdV equation (1.1) for the region |x/7 +4| < 2, in which there
are no phase points on the real axis. For the case of solitonless regions
|x/t+4| > 2, it is considered in [17]. Based on the phase velocity ¢,
apart from the critical line at ¢ = —6, the other critical line should
technically be at & = 6 (refer the Proposition 2.10). However, for the
region where x/t belongs to [-2,6), we find that the set of solitons
contributing to the asymptotic behavior is empty. This indicates that
the region [-2, 6) can be seen as a special case of the solitonic region by
setting the index A defined in (3.2) be empty, and can also be classified
as a solitonless region. Here, we consider the region [-2,6) as part of
the solitonless region, which leads to the classification shown in Fig. 1.
The only transient region in Fig. 1 is near ¢ = —6, which we have made
a discussion in [18].

The soliton resolution conjecture is one of the most interesting
phenomenon observed in the study of solutions to certain nonlinear
dispersive partial differential equations (PDEs). The conjecture suggests
that solutions with generic initial data for many dispersive equations
should eventually decompose into a finite number of solitons, each
moving at different speeds, along with a radiative term [19-24]. Un-
derstanding and proving soliton resolution contribute to our broader
understanding of the behavior of nonlinear dispersive systems, shed-
ding light on the intricate interplay between nonlinearities, dispersion,
and soliton dynamics. Recently, large-time asymptotics and soliton
resolution for some integrable systems have been obtained by using
o-generalization of the nonlinear steepest descent method [25-30].

This paper is organized as follows. In Section 2, we get down to the
spectral analysis on the Lax pair. We state the symmetries, asymptotic
behaviors and time evolution of the scattering data. Further discussion
show that the zeros of a(z) are simple and finite. In Section 3, we set up
an RH problem for a sectionally meromorphic function m(z) comprised
by the Jost solutions and the scattering data. Once the solution of the
RH problem exists, we can directly obtain the reconstruction formula.
To handle the RH problem , we first give the distributions of phase
points and the signature table of Re(2it6), then introduce a set of
conjugations and interpolations, such that the original RH problem
becomes a standard RH problem. Subsequently, according to the basic
factorization of the jump matrix, we introduce some appropriate exten-
sions to deform the jumps onto four different contours in the complex
plane on which their forms are asymptotically small. In Section 4, by
neglecting the d term of m®)(z), we get a conjugation of the RH problem

related to the N-soliton with the modified scattering data. In this way,
we can consider the asymptotic behavior of N-soliton solutions by
using a small norm theorem. The existence of m®(z) is verified, as well
as its asymptotic estimate. Finally, in Section 5, we give the proofs of
the main theorems applying the above consequences.

Notation. We first provide some notations used in this paper:

Rt =(0,00), Ct={z€ C : +Imz > 0}.
The Japanese bracket is defined as (x) :=

1+ x|

The normed space L*(R) is defined with ||q|[ Lr.sg) = [1{x)*qll Low)s
Wkr(R) is defined with [Iqlly kpm)= Zj.;o 10/qll oy H¥R) is
defined with |lqllzeg, = (x)*4ll 2@, where & is the Fourier
transform of u, and H**(R) = L>*(R) n H*(R).

0,(i = 1,2,3) are the Pauli matrices defined as

0 1 0 —i 10
o = , 0, = oy = .
“\1 o 27\ o 7 \o -1

Main results. The main results of the work are listed below.

(1.3)

Theorem 1.1. Suppose the initial data q, ¥ | € H**(R*) with scattering

data {r(z), {zj,c/-}f’:?)l } Order z; such that

Rezy > Rez; > -+ >Rezy_; >0, 1.4)

and define & = f Let q©°)-N (x,t) be the N-soliton solution whose scattering
data can be denoted by {F =0,{z;,¢; }j,V:Bl }, where

- 1 ) 1 1
¢; =c;exp <_E /Rlog(l —|r(s)| )<s sy - Z) ds).

For fixed &, € (0,2), there exist constants t, = t,(qy, &) and C = C(qgqy, &)
such that the potential q(x,t) of (2.1) satisfies

|E+4]| < 50.

(1.5)

lgGe,0) = g®DN (x| < ety 1> 1, 1.6)

Furthermore, for t > t, and | +4| < &, we have confirmed the soliton
resolution for the N -soliton solution
N-1
qg(x,t)=—-1+ 2 [sol(zj;x - xj,t) + 11400,
j=0

where sol(z;;x = x;,1) is defined by (4.10), and

le;l (z; = z)(z; + Z)
x; = 1 {log( ! H B . ion' Ml o
ZImzj Imzj kEn kL)

(zjz — D(z;2 + 1)
mMj/W%u—qu>
- — —ds ;.
T Jr  |s—z?

As a corollary of Theorem 1.1, we have the following theorem:

1.7)

) |

Theorem 1.2. Let ¢“M(x,t) be an M-soliton satisfying the boundary
conditions in (1.2). Let {0.,{z;.c;} /Ai 51 } denote its reflectionless scattering
data. Then there exist €, and C > 0, for any initial data g, of problem
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(1.1)-(1.2) satisfying
& = [lgg — 4" M (x, 0) | gaa ey < €0 (1.8)

qo generates scattering data {r', (/¢! }Jf,"= S} with N > M. For the two

discrete spectrum we use the same order as in (1.4). Suppose M poles in
the discrete spectrum of q are close to that of q*)-M (x, ). The remaining
are close to +1. It is to say, there exists an index L € {0,..., N — 1} with
L+ M < N — 1, so that we have

max (|z; — 2/

0<j<M-1 el e =

’ / ’
c + max |1+ 2z |+max|l—-2z.| <Ce.
el j>M+L| J] j<L| )]

(1.9)

Define ¢ = x/t and let &, € (0,2) so that {Rezj}jl‘ia1 c [o, %0). Then we

have constants (g, &) > 0, C = C(gp, &) > 0 and {x;, }17;' C R such
that for t > ty(qy. &), |€+4| < &,
M-1
qGx,t) — [—1 + 2 [501(2), 3% = X1 + 1]] <cr (1.10)
=0

2. Preliminaries

In this section we provide an review of the results on the direct and
inverse scattering problem for the mKdV equation (1.1).

In Section 2.1, we review the Lax pair of formulation of the mKdV
and equation, and we present the properties of the Jost solutions. In
Section 2.2, we introduce the basic RH problem, which serves as the
basis of the nonlinear steepest approach. In Section 2.3, we plot the
signature tables of the saddle functions so that we can open 9 lens in
accordance with the corresponding decay regions as 7 sufficiently large.

2.1. Lax pair and Jost solutions

The defocusing mKdV equation (1.1) is the compatibility condition
of the following Lax pair

v, =Xy, y, =Ty, 2.1

where v = y(4;x,7) is a matrix-valued eigenfunction, 4 € C is the
spectral parameter, and

X =Xhx,t)=idos +0Q, T =Tx,1)=412X —2ido;(Q, — 0*) +20° - Q,,.

2.2)
with 0 = < 0 ”).
q(x,1) 0

Existence and differentiability of Jost functions. Taking the non-zero
boundary conditions (1.2), we then get the asymptotic spectral prob-
lems

¢ =X 0%, o =T, ¢, 2.3)

with X, (z;x) =id63 + O, T, (z:x) = (442 + 2)X,, and Q, = +o.
The asymptotic eigenvector matrix is given by

Y, ()=1% %0'2, (2.4)

where I denotes the 2 x 2 identity matrix, and z is the uniformization
variable defined as z = A+¢, with A(z) = %(z+z’1), and {(z) = %(z—z’l).
For reference, note that det Y, (z) = 1 — zil

As usual, we define the Jost eigenfunctions w*(z; x) as the solutions
of the scattering problem such that

vz x) =Y, (2) G 4 o(l),  x = oo,

Subsequently, the modified eigenfunctions u*(z;x) can be given by
factorizing the asymptotic exponential oscillations:

bE(zx) = wiE(z; x)e—iC(Z)ms. (2.5)
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Furthermore, u*(z; x) can be defined by the following Volterra integral
equations

Y, (2) + [ Yo (2)e€O095 YU (2)A0, Dpy (2 p)]dy, 2 # 1,

Y. () + [ [+ (x =)0, £163)] A0, (0, (z: y)dy,

uE(z5x) =
z==+l,

where AQ, = O — QO,. Hereafter, we use yii(z; x) to denote the ith
column of p*(z; x). Below we just take a quick review on some existing
properties for the Jost functions u*(z; x), which can be shown in similar
way to Ref. [27].

Proposition 2.1.
WLLR).

Given n € Ny, let g(x) F1 € LV (R*), ¢'(x) €

p For z € C\ {0}, y?’(z; x) and 5 (z;x) can be analytically extended to
C* and continuously extended to C* U R; uy (z;x) and ,u;' (z;x) can
be analytically extended to C~ and continuously extended to C~ UR.

p The maps q(x) — % Mii(z) (i = 1,2) are Lipschitz continuous,
specifically, for any x, € R, Hy (2) and ;4;’ (z) are continuously
differentiable mappings:

o'y : €T\ {0} = L {C7\ {0}, C" (=00, %], C?) n W ((=00,x,],CH)},
(2.6)

oty CT\{0} — L2 {C\ {0}, C" ([xp, ), C*) n W'([xy, 0), CH)},
2.7)

/41+(z) and y; (z) are continuously differentiable mappings:

o'ut €T\ {0} = L2 (T \ {0}, C'([x), ), C*) N W=([x), ), C?)},
(2.8)

Oyt CHN{0) = L (CF\ {0}, C (=00, %01, C*) n W= (=00, %51, CH)}.
(2.9)

P For the map g(x) > a7 y;r(z), there exists an increasing function F,(t),
such that
02t ()| < F,[(+ X1 lg = Ul prari (ol 2 € CH\ {0}

Additionally, given potentials q(x) and g(x) close enough, we have
107 (2) = TF@)] < 119 =Gl 11 gy Eal (L 1XD™ g = Tl 1 g g0 -
(2.10)

P Let S be a compact neighborhood of {—1,1} in C* \ {0}. Set x* =
max{+x,0}, then there would be a constant C so that

it (@) = (127 < Cxm)eC 0=l g 1)1 (x,00), z €S
(2.11)

Asymptotics and symmetries of the Jost functions. The following propo-
sition gives the asymptotic behavior of the Jost functions.

Proposition 2.2. Suppose that g(x)¥1 € L'"*1(R*) and ¢'(x) € WI(R).
Then as z — oo, we have the asymptotics on C*

_. (s 2 _ 1 d
Hi(z)=e + 1 < i/ ) x) +0(E72),
V4 —iq

I | iq -
mE =ty (i/’;(,(q2 - 1)dx> tOED.

and on C~

—i[* (¢*=Dd
Hy(2) =e + 1 < l/""’(q' ) x> +0(z7?),
Z —lq

o 1 iq -2
pE ety (i/x""(q2 - 1)dx> roE
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For z € C*, we have the following asymptotics as z — 0,

pHz) = —éez +0), p5(2)= —éel +0(1); (2.12)
and for z€ C~,
uy(2) = éez +0(),  uiz)= éel +0O(). (2.13)

Abel’s theorem indicates that for any solution w(z, x) of (2.1), one
has 9, (det y) = 9,(det y) = 0. Thus, both y_ and y, are two fundamental
matrix solutions of the scattering problem with det w*(z) = 1 —z~2, and
satisfy the linear relation:

vt(z;x) =y (z;x)S(z), z€R\{+1,0}, (2.14)

where S(z) is called scattering matrix and is represented as:

a(z) ¢(z)
S(z) = .

b(z) d(z)
Hereafter, we use a bar to denote the complex conjugate. Then we
can establish the following symmetries for the Jost functions and the
scattering matrix, which will enable us to set up an RH problem with
desirable symmetries.

Proposition 2.3.  Suppose that q(x) F 1 € L'""(R*) and ¢'(x) €

WLLR), then
1. For z € C* \ {0}, the Jost functions y/f (j = 1,2) satisfy the
symmetries
Vi@ =owiE).  wEE) =0yl (2.15)
VE@ =vECD, vER =yE-D). (2.16)
Vi@ =30, v =l @.17)

2. The scattering data a(z), b(z), c(z) and d(z) satisfy the symmetries

S(z) = 6,80, = 6,8z N5y, S(z) = S(-2). (2.18)

It then follows that the scattering matrix S(z) can be rewritten as

_f a(2) b(z)
S(z)—<b(z) H) ze R\ {x1,0}.

Scattering map from initial data to reflection coefficient. The reflection

coefficient that will be used in the inverse problem is defined by the

scattering coefficients a(z) and b(z)
. b(@»

r(z) = 2@

The following proposition provides some useful properties of a(z) and

b(z).

(2.19)

Proposition 2.4. Let q(x) ¥ 1 € L'+ (R*) and ¢'(x) € WL1(R), then

1. The scattering coefficients can be expressed as
a2 = Wr(y !, wy) Bz = Wr(y . w))
1-z2 7 To1-—z2
Thus it follows from the analyticities of w* that a(z) is analytic in
C* while b(z) and r(z) are defined on R\ {+1,0}.
2. For z € R\ {+£1,0}, we have

(2.20)

la(2)* = 1b(2)I* = 1, (2.21)
which gives a constraint
@R =1- — (2.22)

<1
la(z)|?

3. The scattering data has the following asymptotics
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lim (a(z) — 1)z =1 / (¢> = Ddx, z € Ct, (2.23)
Z—00 R

lirr(l)(a(z) +Dz =i / (¢*> - dx, ze C* (2.24)
Z—> R

1b(z)l = O(IzI™%), as|z| -, z€R (2.25)
1b(2)| = O(Iz»), as |zl -0, zeR. (2.26)
So that

Hz)~z7%,  |z| > o rz) ~ 22, |z| = 0. (2.27)

It can also be shown that z = +1 are the simple poles of a(z) and
b(z) on account of the expressions in (2.20). Even though, we still can
derive the boundness of r(z) at z = +1. Using the symmetry in (2.17),
it is easy to verify that y (+1) = iy} (1), which implies that

+a, ia,

az) = £ L 0(1),  bz) = ——= 1 o), (2.28)
zF1 zF¥1

where

a, = %det[wr(il), w5 (D], (2.29)

Consequently, it is obvious that the reflection coefficient r(z) is bounded
at z=+1 and

lim r(z) = Fi. (2.30)
z—+1

Although the scattering coefficients have some simple poles, given
specific conditions on the initial potential, the reflection coefficient will
exhibit smoothness and decay.

Proposition 2.5. Suppose that q(x) T 1 € L'2R¥), ¢'(x) € WI(R),
then r(z) € H'(R).

Proof. Proposition 2.4 implies that a(z) and b(z) are continuous when
z € R\ {+1,0}. Then r(z) is continuous for z € R\ {+1,0}. From (2.27)
and (2.30) we know that r(z) is bounded in the small neighborhood
of {+1,0} and r(z) € L'(R) n L>(R). Here we just need to prove that
' (z) € L*(R). For &, > 0 small, from Proposition 2.1, the maps

g = detly; (2),9;(2)] and ¢ — detly; (2). v (2)] (2.31)

are locally Lipschitz maps from
{q:d(x) e WE(R) and g € LY (R)} » W R\ (=5, &y)) for n > 0.
(2.32)

According to Proposition 2.1, ¢ — y/l‘L(z, 0) is a locally Lipschitz map,
and this fact also holds for g — v, (z,0) and g — vy (2,0). Together with
(2.23)-(2.26), we derive that ¢ — r(z) is a locally Lipschitz map with
values in W (s ) n H" (1), where I, =R \ (=6p,89) U (1 =8y, 1 +
8yp) U (=1 — 8y, —1 + &y)). Then fix 5, > 0 small to make sure that the
three intervals dist(z, {+1}) < §, and |z| < §, have no intersection. In
the complement of the union
10/r(z)| < Cj,(2)™" for j =0, 1. (2.33)
In the following step, we will just prove the boundedness of /(z) in the
small neighborhood of z = 1. Let z € U(1, §,) be a neighborhood of 1,
then we have

) b(z) detly; .yl AR detly; (s), wy (s)lds — 2ia,

S a@)  detly,wyl [0 detly ] (s) wi(9)lds +2a,

(2.34)

where a, is defined in (2.29). If a, # 0 then obviously r/(z) exist and
is bounded near 1. If a, = 0, then z = 1 is not a pole of the scattering
data a(z) and b(z). Therefore, they are continuous at z = 1, implying

H2) flz g det[y (s), ll/f'(S)]dS

[0, detly (), wi()1ds

(2.35)
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Fig. 2. Distribution of the discrete spectrum on circle |z| = 1: the jump contour R, the

red dots (. ) and green dots (. ) represent the zeros of a(z), they are corresponding
to breathers and solitons respectively. The blue dots (.) represent singularities.

From (2.20) we have that

(2% = Da(z) = 2% det[y/r, vyl (2.36)

While a, = 0 implies that det [y/fr, vy .1 =0, differentiating (2.36) at
z =1 we get

2a(1) = 0, detly;t,y; Il ). (2.37)

With [la(D[I> = 1+ [|b(D)||* > 1, we have 9, det[y;, w; 1ll.—; # 0. It then
follows that the derivative +/(z) is bounded in a neighborhood of 1.

The proof for the case z = —1 is just an analogue. For z = 0 we
need to use r(z~') = —7(z) to illustrate that r(z) — 0. Consequently,
P(z) € L2 R). O

The following proposition gives a bound for reflection coefficient,
and the proof can be found in [27].

Proposition 2.6. Suppose that q(x) ¥ 1 € H>*(R%), then the reflection
coefficient satisfies

lllog(1 — |7*)ll Loy < o0 for any p > 1. (2.38)

Now we introduce the discrete spectrum. Suppose that a(z) has finite
N simple zeros z; (k = 0,...,N —1)on D; = {z € C* : Imz >
0,Re z > 0}, then symmetries (2.18) implies that the discrete spectrum
appears in double pairs Z = {zy, Z, —Z, —z } o - When z; = -z, the
corresponding quaternate zeros {z;, Z, —Z;, —z; } degenerate into a pair
{—i,i}, which corresponds to solitons. We further classify these discrete
spectrum as

2=z Za= () 2v=2,u2, Z2=2TuZt, (2.39)

where Z* formed by the complex conjugates of Z*+. The discrete
spectrum can be seen in Fig. 2.

Next we will state some properties of the zeros of a(z). From the
symmetries of y*(z) we know that there exists a constant y, € C such
that

Wfr(zk) =71, (=Z),
(2.40)

vl =nws (2, w20 = 7wy (2,

where y, is known as the connection coefficient related to z;.

Proposition 2.7. Suppose g(x)F1 € L12(R¥), then the discrete eigenvalues
are simple, finite and distribute on the circle |z| = 1.
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Proof. Let z; € D, be a zero of a(z). It is well known that the Dirac
operator for defocusing case is self-adjoint, meaning that the spectral
parameter A(z,;) is real, which leads to the fact that

(2.41)

Therefore, all the zeros of a(z) are distributed on the real axis and the
unit circle. Next we prove the zeros are not real. First we note that
z, € R\ {0,+1} cannot be a zero of a(z), as it would contradict (2.21).
We will then show that 0 and +1 cannot be zeros either. The functions

[1(0) = |0} detly (&), w5 (€], k=0,1 (2.42)

are continuous for 6 € [0,7/2]. Assume that z = 1 is an accumula-
tion point, according to the Bolzano-Weierstrass theorem, there exist
sequences B;k), k = 0,1, satisfying lim;_, 9;.") =0 and fk(eﬁk)) = 0 for
each j. From (2.28), a(z) = o(1) as z — 1. This just contradicts the fact
in (2.21). The proof is the same when z = —1 is an accumulation point.
In brief, all the zeros of a(z) are distributed on the unit circle.

From Proposition 2.3, we have the symmetries of y* at z;:

v ED =705 G, ol @G = oy (0D, w20 = Rl (20,

which imply that y, = 7, i.e., , € R. The condition g(x) ¥ 1 € L (R¥)
guarantees the existence of g—j. Evaluating the differentiation of (2.20)
at z;, we have

oa det[d, w7, w1+ detly], 0,5 ]

ga 2.
0A lz=z (243)

1-2z72 2=z

Differentiating the two functions appear in the numerator of (2.43) with
respect to x and using the scattering problem (2.1) we obtain that

% det[0,y;, w1 = det[ Xy, wy ]+ det[ X oy, w1+ det[o,y], Xy ]
= idet[ozy], y5 ],

and

% detly;, 0wy ] = detly], X wy 1+ detl Xy, 0,5 ]+ detly;, X0,y ]
= idet[q/;r,a3u/2’].

According to (2.40) and the decaying properties for each column at z,,

we can easily get that
X

det[0,y] . w1 =iy, / detloyw; (24, 5), Wy (2 $)1dss,

-0
o0
detly;, 0,5 1 = iy, / detloyy; (2, 5), Wy (2, $)1ds.
X
The symmetries of yw* give us vy (z4) = —iz;lall[/; (z4), which implies
da Yk - 2
— = ds.
A lz=z = 22(zp) /R|‘l/2 (zpl"ds

Since y, is real and {(z;) is imaginary, we conclude that S—Z
z=z)

(2.44)

e iR.

It follows that the zeros of a(z) are simple. []

Now, we can define the trace formula
.\ N-l s 2
_(z-i (z-2z,)(z+2,) 1 log(1 — |r(s)|")
a(z)_<z+i>g(z—Zn)(z+zn)eXp< 277:i_/]R s—z ds )
(2.45)

Remark 2.8. In the trace formula, we claim that +i are always
present for this paper. To show this, consider the function a(z) =

N6 - 2
z=i N-1 (z—z,)(z+Z,) _ log(1—-|r(s)|*) _ i
(z+i> Hn=0' D exp( e — ds), wher? § = 1 indi
cates that +i are zeros of a(z) and § = 0 indicates otherwise. From the
asymptotic behavior (2.24), we have that lim,_, a(z) = —1, which leads

to

2
a0) = =1 = 1) eXP<_ﬁ / Md> |
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Using the symmetries (2.18), which implies |r(z)|* = |r(—z)|?, we have
that

/" log(1 — [r(s)%) s = /" log(1 — |r(s)[%) ds
— N - oo N

This simplifies the equation for a(0) to —1 = (=1)°. Therefore, one has
6 = 1, meaning that +i are indeed zeros of a(z). However, +i are not
always the zeros of a(z) in the generic case. As shown in [31] that if
q,./q_ =1, then #i are no longer zeros of a(z).

At the end of this section, we demonstrate the time evolution of the
scattering data a(z), b(z) and r(z). Define w*(z;x,t) = w*(z;x)H(z;1)
as the time-dependent eigenfunctions, where H(z;¢) is a function to be
determined. Substituting y*(z; x, ) into (2.1) leads to

(0, = Dly*(z;x)H(z;1)] = 0. (2.46)

As x — oo, (2.46) gives H(z;1) = elé(@@4*+2103  Differentiating (2.14)
with respect to 7 and using (2.46), we derive an ODE that the scattering
matrix satisfies

= i¢(2)(42%(2) + 2)[03, S1. (2.47)

which indicates that
a(z,1) = a(z,0),
z, (1) = z,(0),

b(z, 1) = b(z, 004 (z1) = r(z, 004+

yk(t) =7 (O)eiC(4AZ+2)I .

Hereafter, for convenience, we still use a(z), b(z) and r(z) to denote
a(z,1), b(z,t) and r(z,t), respectively.

2.2. An RH characterization of the mKdV equation

Now we introduce the sectionally meromorphic function

HY (2%, 1) B co
W,Mz z3 X, > 2 >

T(zx,1
(ﬂf(z;x,t),@) zeC,
a(2)

then the following matrix RH problem is proposed.

m(z) = m(z;x,1) = (2.48)

RH Problem 2.1. Find a 2 x 2 matrix-valued function m(z; x, t) such that

1. m(z) is meromorphic for z € C\ R, with poles belonging to the set Z
defined in (2.39).

2. m(z) saﬁsﬁes the followmg symmetries

m(z) = oym(Z)o, = z ' m(z oy = m(—2). (2.49)
3. m(z) has the following asymptotics
mz;x,)=1+0z", z-0;  zmzx,0)=0,+0(z), z-0.
4. my(z;x,1) = limpe_, . m(z'; x, 1) exist for any z € R\ {0} and meet
the jump relation m(z; x,1) = m_(z; x,1)V (z), where
1— 2 _a2it(2)
O S § (2.50)
r(Z)e—th€(1) 1
and
0(z) = E(z){x/t + 422 (z) + 2}. (2.51)
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5. m(z; x,1) has residue conditions at the simple poles in Z = Z* U zZ+

0 0
Resz=Zk m(z; x,t) = Zlin;k m(z; x,t) <c . 6) 0) s
k )

¢ (x,1)
0 s

0
Reszzik m(z;x,t) = zlir?k m(z; x,t) <O

(2.52)
. 0 0
Res.__; m(z;x,1) = zgl;nik m(z; x, 1) con o)
3 —(x,
. 0 —cp(x,1)
Resoz, mzix,0) = lim m(z;x,1) o . ,
where
0
c(x, 1) = ;k((z )) 20 2 ¢ 2O,
7,(0) _ 2z 2.5

== = — = Ziled
a'(z) S W5 (245 %, 0)| dx

Remark 2.9. The solution of RH Problem 2.1 preserves the symmetry
from z to —z, ensuring that the potential recovered from this solution
is real, consistent with the fact that the solution of the mKdV equation
is real.

It then follows the reconstruction formula

q(x,t) = lim izmy;(z; x,1). (2.54)
Z—00

2.3. Signature tables

Large-time asymptotic behavior of RH Problem 2.1 is influenced by

decay/growth of oscillatory terms e*2(2) and phase points of 6(z). Let
=x/t, direct calculation gives
5 +3 3  £+43

o) = 222 * 274 e
from which we can get six phase points. Moreover, he decay/growth of
oscillatory terms e/ is determined by the sign of Re(2it6(z)). The
decaying region of Re(2it6(z)) is shown in Fig. 4.

Proposition 2.10 (Distribution of Saddle Points). In addition to the two
fixed saddle points +i, there exist four saddle points satisfying the following
properties for different & (see Fig. 3): - For ¢ < —6, the four saddle points
& = ¢&;(8), j = 1,2,3,4 lie on the jump contour X = R\{0}. Moreover
wehave & < -1 < & <0< & <1< ¢ and g = éi =_5— = —¢&;
- For -6 < & < 6, the four saddle points are away from the coordinate
axes; - For ¢ > 6, the four saddle points lie on the imaginary axis with

Imé; > 1>Imé >0>1Imé& > —1>1Imé, and £,&, = &6, = —

Proof. Letting 6'(z) = 0 and factoring the left-hand side gives us

(1+2%) (3z* + 22 +3) =0. (2.55)
Solving for z, we have z = +i and

N —VE =36
oo EHVE or 2o _STVE-36 (2.56)

6 ’ 6

For & < —6, we have — sV 36 5 =36 5 0, and the four roots are as follows.
=1 | ¢ 52 1 | ¢ 52
_ 4| gt VE-36 52 g+ Ve =36 52

with & < -1 <& <0<§ <1 <& and & = -f ==&,
2
For —6 < & < 6, the discriminant £2 — 36 is less than zero. Therefore,
there exist four saddle points &; = Re(&;)+iIm(¢;), where Re(¢;), Im(¢;) #
0,j=12,3,4.

(2.57)

(2.58)
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(a)

(b) (c)

Fig. 3. Plots of the distributions for saddle points: (a) £ < =6, (b) =6 < £ < 6, (¢) £ > 6. The red curve represents Re¢’(z) = 0, and the green curve represents Imé’(z) = 0. The

intersection points are the saddle points which represent the zeros of ¢'(z) = 0.

(a)

(b) (c)

Fig. 4. Signature table of Re(2ir6(z)) with different &: (a) &€ < -6, (b) —6 < & < =2, (¢) £ > —2. In the purple region, Re(2i0) < 0, while in the white region, Re(2i76) > 0. The purple

dashed curves are the critical curves.

For ¢ > 6, we have — Ve 36 “22_36
saddle points are as follows

< 0, and the four pure imaginary

Je+ Ve =36 Je+ V& =36
a=if TV g[S (2.59)

_JevETm e yE 6
& =i 3 s &= G . (2.60)

with Imé; > 1 > Imé& > 0 > Imé& > —1 > Imé&, and &,&, = && =
-1. O
According to Figs. 3 and 4, it could be observed the following:

» For ¢ < —6, there are four stationary phase points in addition to
i,—i, all of which are located in the jump contour as shown in
Fig. 3(a), with the corresponding signature table in Fig. 4(a).

» For —6 < ¢ < =2, The distribution of phase points is shown in
Fig. 3(b), with the signature table shown in Fig. 4(b).

« For & > -2, there exist again four stationary phase points besides
i,—i.

— When -2 < & < 6, the four saddle points are away from the
coordinate axis (both real and imaginary axis), correspond-
ing to Fig. 3(b), with the signature table shown in Fig. 4(c).
The asymptotic analysis for —2 < & < 6 could be seen as a
specific case of the analysis for —6 < & < -2.

- For & > 6, the four saddle points are all distributed on the
imaginary axis as shown in Fig. 3(c), and the signature table
is still shown in Fig. 4(c).

3. Deformation of the RH problem

In this section, two crucial steps are given to use the steepest descent
method: (i) converting the residue conditions of those poles, which are
far away from the critical lines, into jump conditions on new auxiliary
contours; (ii) using a well-known factorization for the jump matrix to

deform the jump line R into such lines that the jump matrices on them
decay exponentially as r — oo.

3.1. Interpolation and conjugation

By simple calculation, we find that on the unit circle the phase
function satisfies

Re(2ir6(z)) = =2t sinw[& + 2 + 4 cos? w], (3.1)

where o is the argument of z = el®,

For -6 < ¢ < =2, let § = \/—%, then the discrete spectrum Z,;
defined in (2.39) decomposes into three sets: points with Re(z;) > &,
and exponentially decaying connection coefficients ¢, (x, ) = ¢, e 210(z)
as t — oo; points with 0 < Re(z;) < &, and growing connection
coefficients; and a single point with Re(z;) = &, and a bounded
connection coefficient in 7 (see Fig. 4(b)). Let p > 0 sufficiently small
such that

1 . . .
< = min min |Re(z; — z,)|, min |Im(z .
<3 {Z| (2 = =0l mip, | <k>|}

We divide the index set H = {0,1,..., N — 1} into two subsets
a={jeH : Re(zj)>&}, V={jeH:0<Re(z;)<&},

and define

A={j€H :|Re(z;) - &| < pand |Re(z,) + &l < p} . (3.2)

then the sets |Re(z — z;)| < p are pairwise disjoint. If j, € A # @, then
we have [0’ = O(1).

Note that we can use a well-known factorization to deform the jump
matrix V:

—_ 2 __
V(Z):<1 Ir@FF  —r(z)e

(z) o—2i16(2) 1 (3.3)

2i16(z) .
) = B(2)Ty(2)B(z)™",
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1 0 1 —r(z) . Q2it0
@ o |0 To@=A=rD" B@)T = . ‘*"“’1' :
1-Ir@)I*

B(z) =

and B is the Hermitian conjugate of B. Therefore, one can extend
B(z) into C~ and B~' into C*, while the second term 7, remains on
R. This deformation is helpful when the factors into regions in which
the corresponding off-diagonal exponential terms e*?? are decaying.
We then start to handle the second term Tj,.

Define the function

U » BECREPICREN - P (= = LY as
Tz = H(zzk—l)(zzk+1)eXp< 2ni/Rl°g(l o (= h)‘“)'

kea

3.4

Proposition 3.1. T(z;¢) is a meromorphic function in C\ R and has the
following properties:

* T(z) has simple poles at +z, and simple zeros at +Z, with Re(z;) > &,.

* T(z) satisfies the jump condition

T (z:8) =Tz - r2)")., z€eR (3.5)
* T(z) has the following symmetries

T(z86)=T""z:6)=Tz";8) =T(-z9). (3.6)
* T(z) has the following asymptotics:

T(c0:8) = lim T(z:¢) = =Dk, z 5 oo, (3.7)

where | A | is the cardinality of the set a, and |T(c0,&)| = 1.
» As z — oo, we have the asymptotic expansion:
L 8) = T(co: _1 i L )P -1
T(z;&) =T(0;&) <I Z (kEZAétllm(zk) o /Rlog(l |r(s)] )ds) + o(z )).

(3.8)

. TLI(ZZ)@ is holomorphic in C* and there exists a constant C(qy) so that
a(z)
< C(qy), ze€C . (3.9
T(z:€) 0
Moreover, T“((zz_')g) can be continuously extended to R, with |T”(<;_')§)| =1
forzeR '

Proof. The first three properties are easy to prove according to the
definition of T(z), we begin from the fourth. As z — oo, the product

-z )Nz+2Z) 1 2=z -1 (z2+Z o (el
H(zzk—l)(z2k+l)_sz <z—§k> Z <z+zk> =D

kea kea

together with —— L —

- 2 . .

= —% and [ st = 0 implies the fourth
property. The next property is a simple corollary of the last one. In the
end, from the trace formula (2.45) we have
az _ H (z - fk)(z + zk)' (3.10)
T(z) ey (2= 2z + z)
Note that the absolute value in the right-hand-side is not larger than 1
for z € C*. So we have proved the proposition. []

Next, we proceed with interpolations and conjugations. We first
introduce the interpolation function G(z):
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Im(z)
i i
I I
Z, [0 Rt (b 7
Jo |et Yol “ho
e ' 1 e
- H H N
-Z ' ' o Zk
' ' ®
; : 1 .
’ ! ! '
1 N N )
1 N N )
' 0 0 '
' 0 0 1
Y ! ! Y R
T T 7 e(z)
—1'|‘ ' 0 ' i1
\ ' ' /
\ ' ' ;
\ ' ' /
\ ' ' /
O @)
| |
i i Yt
-Zx . i ' . Zy
~ H H e
~ 'i : -
“zo|N e LT
| - - |
i i
| |
I I

Fig. 5. The dashed lines are where Re z = +¢,. We divide the discrete spectrum in the
first quadrant D, into three sets: A \A, V\ A and A, with the poles reserved in A. By
the symmetries, the discrete spectrum in the second quadrant is also divided into three
sets.

» For j ea\A,

2ir(z
1 _(z—z/»)e i16(z )
€i > z=z;| <p,
0 1
1 (Z+2_/ )ezirS(zj)
0 le ’ |Z + 2]' < P
G(z) =+ (3.11)
1
_Gpe G 2=zl <,
¢
1 0
T .zt l<p
<
« For jeV\ A4,
1 0
¢y~ 20)) z-z;] <p,
- Z*Zj
1 0
g e 20 s lz+zl<p,
z+Z;
G(z) = i) (3.12)
1 -2 _
=% > z—2z;| <p,
0 1
¢, 210))
VS5 | zezl<n
0 1

» Elsewhere, G(z) = I.

Then we can introduce the first transformation which converts the
poles that are far away from the critical lines into jumps

mD(z) = T(c0)~ 3 m(z)G(z)T(2)73. (3.13)

Define the contour

zmiRU{ U {ZE(C:|zizj|:por|zizj|:p}}. (3.14)

JjEH\A

As shown in Fig. 5, the small circles around the poles are oriented
counterclockwise in Ct and clockwise in C~. Then m(!(z) satisfies the
following RH problem.
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RH Problem 3.1.
that

1. mW(z; x,1) is meromorphic in C \ 1), where XV is defined in
(3.14).
2. m( has the following asymptotics

Find a 2 x 2 matrix-valued function mV(z; x, 1) such

m(”(z;x, H=1+ (9(2_1), as z — oo,
zmWD(z;x,1) = 6, + O(z), as z — 0.

D, : 1 . . D, . _
3. m, (z; x,1) exist for z € V) and meet the jump relation m_,’(z; x, 1) =
mD(z; x, )V V(z), where

s for zeR,
1 0 1 —F(z) T2 2it0
R T o2 L (2e ’
wT__ (Z)C_ u 1 0 1
* for j ea\A, (3.15)
1 _ (Zfzj)eZi"o(Z/) sz(z)
< s lz- Zjl =/
0 1
| (ZH’)_eZiIG(Zj)T‘Z(z)
i ) lz+z;] = p,
0 1
V(I)(z) =4
1 0
_<z-zj)%-2i'9(i/) e 1| |z—2;| =p,
€
1 0
(z+zj)efzi'9(zf) Tz(z) | , |z + Zjl =/
€
s for jeV\ 4 (3.16)
1 0
_cjefzi'e(Z/)Tz(z) | 5 |Z—Zj| =p
Z—Zj
1 0
= o —2it0(z)) s lz+Z;| = p,
LT 1 /
V(z) = ! e (3.17)
A T
=3 . lz=zl=p,
0 1
 2i6(z))
1 LT_Z(Z)
z+z; s l[z+z;| =p.
0 1

4. If there exists a j, € A, then mV(z; x, ) satisfies the following residue
conditions at +z; and +Zz; :
If jo €A NA,

—1 2it€(zj0) / _2
¢, © T (Z/o) >

Res._. mD(z) = lim mD(z) <0 o
o

0 0
Res,_. mP(z)= lim mV(z . _ s
=z, (2) =z (2) C_j_ochuB(sz)T/(sz)—z 0

_ 1200z ) oy -2
g le T'(z,) >

0
Resz=,i/0 mV(z) = ﬁli{r% mV(z) <O 0
Jo
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(1 (1 0 0
Res,__, m(z)= lim m'(z) 2it0(z. .
Jo =-zj, _cj—ole (ZIO)T,(ZjO )_2 0
IfjoeVnNA,

0 0
Res,_, mP(z) = lim mP(z) . ,
o EReT) cjoe_zug(zm)T(zjo)z 0

_ =2i0(z; )7 )
0 ¢ e 0T (z; )
Res,_, mP(z)= lim mV(z) Jo L
o 2=Zjy 0 0
0 0
Res,__;. mV(z) = lim mP(z) —2itB(z. ) s
jo -z, _c_joe it (ZJO)T(ZjO)z 0

—2it0(z;,) 2
0 —c; e 0'T(z; )
Res,__, mY(z)= lim mP(z) o Jo .
J0 za—zjo 0 0

5. mD(z) satisfies the symmetries: mV(z) = 6;m(Z)o; = z-'mD(z~1)
0y = mD(=2).

Proof. Now we prove that m(!)(z) satisfies the above RH problem. The
first statement and the asymptotics as z — oo in RH Problem 3.1 can be
obtained directly from RH Problem 2.1, we just prove the asymptotics
as z — 0. Using the symmetry in (3.6) and the expansion in (3.8), we
have
zmV = T(00)™3 zm(2)T(2)7 = T(00) (65 + O(2))T(z~") ™3

=T (00)™ (05 + O(2))(T(0) + O(2))™% = 0, + O(2).

The jump relation is also a direct inference of (3.11) and RH Prob-
lem 2.1. Now we derive the residue conditions. For j, € V n 4,

Res,_, ml=Res._; T(e0)™ " m(2)T(2)"

0 0
lim T'(c0) %3m(z)T(z)*3T(z)~% . T(z)3
A (c0) (2)T ()T (z) (Cje_zua(z/o) O> (2)

. m 0 0
im m'’(z) e .
=z cj()e 2”9(110)T(Zj0)2 0

For j, €a nA, we have

M _ - 7. —03 —_
Reszzzjom ZEI;}O(Z zIO)T(oo) < @ " T®

= 7oy (0, 2250
T,(Zjo)

m;r(z)T(z) m3(z)
= lim T(oo)™ |, 22—
z=zj, a(z) T(2)

0 el T (27
0 0

where we used

mT(z)T(z) m3 () )

T(2) - T(z,)

Z_zjo

=T(c0) ™" Res,_, m (DT (z,) = T(0) ¢ e 210y (2 )T (Z)-

m(P(z0) = T(00)™ Jim (DT =T(e0)™ lim [my(2)z = 25,

The others can be obtained using a similar method. At last we prove
the symmetries for m"(z):

m(z) = T(c0) B mEZ)T(2) = T(0) % 6,m(2)6,T(2)™ = o,mV(2)0,;

mD(z71) = T(00)™3m(z")T (2717 = 2T (c0) 3 m(2)0,T(2)™ = zmV(2)o,,

m(=2) =T(c0) m(=2)T(=2) = T(c0) *m(z)T(2)"* =mV(z). O

3.2. Opening 0 lenses

In this section, we aim to eliminate the jump on the real axis by
choosing a suitable angle, ensuring that the lenses avoid the poles’
surrounding disks.
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Im(z)
El’o,oi’ 7T ‘Eoz\fo
5.7 E E Nz
23 @ : ! 65 24
o ] L —a,
' BE 0 ——| i Re(z)

—Zp

e 3
Zjd Zj

’
PRSP gy

Fig. 6. Find a ¢(¢) small enough so that there is no pole in the cone and the four rays
X,k =1,2,3,4 cannot intersect with any disks |z + z,| <p or |z£Z,| < p.

First we are going to show that there is no phase point on the real
axis when —6 < & < 2.

Proposition 3.2. When |&+ 4| < 2, there is no phase point in the real
axis.

Proof. From (2.51), we have

0'(z) = {3(z + —) +(¢E+ 3)(— + 1)} (3.18)

Assume that 0’(z) has zeros in the real axis, then
3D+ 1)+ E+IE +2)=
Z3 z

Let s=z+1/z € R, then s € (—0,—2] U [2, 00) and the above equation
becomes s3+(&/3—-2)s = 0, which means that s = 0 or s> = 2—¢/3. While
s> € (4/3,4) as & € (=6, —-2), which contradicts the fact that s> > 4. So
there is no phase point on the real axis. []

Remark 3.3. The above proof implies that the range for ¢ in which
there is no phase point on the axis can be extended to (-6,6). But as
& € (-2,6), A will always be an empty set, so here we just investigate
the case as & € (-6, -2).

We then define a sufficiently small angle 6, > 0 so that the cone
{z eC: |R“| > cos 6, ¢ has no intersection with the disks |z + z;| < p
or |z+ Z;| < p. For any ¢ € (-6, -2), let

—4—6E—|E+4
@(&) = min {90, 2 arccos # } s
and 2 = Ui=l £, where

Q= argz € (0,¢(£)},
Q3 ={z:argz € (—x, -7+ ¢©&)},

(3.19)

{z: ) ={zargze(x - &), m},
Q4= {z argz € (-¢(&),0)}.
Let the boundaries of £ be

3, = PORY,
3, = eI HORT

3 = TR
3, = e IPORY,

which can be seen in Fig. 6.

Proposition 3.4. Let & = f and —6 < & < —2. Then for z = |z|e® = u+iv
and F(s) = s + s~ the phase function 6(z; x,t) defined in (2.51) satisfies
the following inequalities:

Re[2it0(z; x,1)] < —éF(lzl)ztl sinw|(2 — (3.20)

E+4D, z€Q U,

10
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Re[2it0(z; x,1)] > %F(lzl)ztl sinw|2—-|£+4]), zeRu,  (3.21)

Proof. We just prove when z € 2,. We can calculate from (2.51), for
z = |z|el®,

Re(2i0) = —F(|z]) sinw[& + (F(|z|)2 —2)(1 +2cos2w)].

Note that F(|z]) > 2, so we have
F(lzD2 - 1&+4]) - 6£

Re(2i0) < —F(|z])| sinw]| |& + (F(|z])* - 2) 62| =

- _éF(|z|)2| sino|2 - [&+4]). O

Proposition 3.5. Define the functions R;
satisfying the following boundary conditions,

CQUQ,, > C =12

F(z)
Ri(z) = ——— ER;
1(2) L 1roF +(Z) b4
R(z) =0, z€ X U2y,
r(z) 2
(z )——Tf(z) zeR;
O T ar
Ry(z) =0, z€ 23U,

For a fixed constant c,(q) and a fixed cutoff function ¢ € CP(R, [0, 1]),
we have the following estimates

I0R; (D) < ez + [Pzl + oz, z€L,  i=1234j=12%
(3.22)

[0R;(2)| < ¢]z—1], ZE€ 0,92, [0R;(2)| < ¢lz+1], Z€Q,,0Q,.
(3.23)

Extending R by R(2)ll:cq,ua,,,
—R(z™!) holds.

= R;(2), such that the symmetry R(z) =

Proof. We just prove the case for R, in ©2,. The proof for other cases
is just an analogue.

From (2.28) and (2.30), z = +1 are singularities of the scattering
coefficients a(z) and b(z), which implies that z = 1 is a singularity
of R,(z). But one can eliminate this singularity by using T(z)~2. From
(2.22) and (3.5) we have

@ o2 :@< a(z) )2 G ( a(z) >2’ 520
1—|r(2)] a(z) \ T, (2) 7.2 \T:(2)

where

Jp(2) = detly (zx, 0,0 (zx, 0] J,(2) = detly; (2%, 0,95 (2%, 1)].

(3.25)

Since in the scattering problem, X is traceless, we can then derive
that the determinants of the Jost functions q/ji(z;x, 1, j = 1,2, are
independent of x. The analyticity of the denominator in the r.h.s. of
(3.24) can be obtained owing to Propositions 2.1 and 3.1.

We then introduce the cutoff functions y,, x; € Cy@®,[0,1D with
small support near 0 and 1 respectively. For any sufficiently small s € R,
1 = xo(s) = (s + 1). Moreover, defining x,(s) = y(s~') ensures the
symmetry which will be useful in the following content. Then we can
rewrite R|(z) in R as R;(z) = R;;(2z) + R,(z) satisfying

Ri2)= (1= 1)~ |( <)>|2 T2 Rlz(z)=xl<z>j’i‘2 (;fffz)))z
(3.26)
For a fixed small §, > 0, extending the function R,;(z) and R,,(z) by
Ry (z)=(1- ;(I(IZI))%TAZ)‘2 cos(k arg z), (3.27)

arg
f(zD)g(z) cos(k arg z) + —)(o(

Rix(2) = )f (1z])g(2) sin(k arg z),

(3.28)

where f’(s) denotes the derivative of f(s) and
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T,(s)

k= X a(z )> .
20, 9= (T() T,(5)

Direct calculation shows that R; defined in this way satisfies the
symmetry R;(s) = —R;(571).

Now we give the estimates of the d-derivatives of (3.27)-(3.28). For
R, we have

flo)=

)(1(5)

5)(1(|Z|) r(|z|) cos(k arg z)
TGP 1- D!

OR, (z) = —

1- 11(|z|)5 r(|z|) cos(k arg z)
T(z)? 1= 1r(1zDI?

(3.29)

Note that for the fixed constants C and ¢, 1 — |(z)|> > ¢ > 0 as z €
supp(1 — x;(|z])) and IT(z)2| < Casze .an supp(l - x(lz])). For
z =u+iv = pel®, we have 9 = -(a +i0,) = ¢ (a + a ). As T(z) and
g(z) are analytic in 2, it follows that

- _— 1 -
dx1(|z]) r(|z]) cos(karg z) | 531[1)({"‘303(1“’)

= (3.30)
T(z)>  1=]r(lzDI? T(2)*(1 = |r(1zD|*)

Scl(ﬂuzl),

for some ¢ € C (R, [0,11) with a small support near 1 and with ¢ =1
on suppy,. Using r(0) = 0 and r(z) € H'(R), we have |r(|z])] <
[z1'/2]17" || L2(g)» then for some fixed constants C, and C;, we have
1= 702D - r<|z|>cos(kargz)>
T(z)? 1—|r(|z)[?

' 1= x(zD
T(2)*(1 - |r(1zDI*)

1em(r cos(ka) — ikF|z| ! sin(ka))(1 = |r(JzD]?)

+§ei"(r/F + 7 r)F cos(ka)

[r(2)]
Iz|

So we get the estimation for dR,,(z)
|0R (2] < €19(12]) + 6] (2)] +es]2] 72,

<GIF@)|+C <GP (@) + Cylz” V2.

Now we estimate |0R,(z)|. We have

—emg(z) 1 cos(ka)(1 — ;(0(_))_ f ()

6R12(z) sin(ka)

+- (/’f () bln(ka))(o( f (p) Sln(ka))(o( )|
)

in which g(z) is bounded. So we can state that |0R,(z)| < cs¢(|z|) for a
¢ € CPIR,[0,1]] supported near 1 and for a constant ¢,, thus yielding
(3.22).

Eventually, as z — 1, we have

[0R5(2)] < [sin(ka) + (1 = yo(a/6p)] = O(a),

so (3.23) follows immediately. []

Now we define the modified factorization on R as V(z) = B(z)

B~f(z), where
~ 1 RleZi’9
Bf(z) = .
. (0 1 )

~ 1 0
B(z) = Rye 2 1)’

Using 3.5, we define m®(z) to open the lenses:

mD(2)Bi(z), zeQ,uQ,;
mP(z) =4mD(2)Bz), ze ;U Qy; (3.31)
mD(z), zeC\ Q.
Let
@ = U {zeC:lzxzl=por|z+z]=p}. (3.32)
jEH\A

Then m®)(z) satisfies the following 9-RH problem.

11
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RH Problem 3.2.
m®(z; x, 1) such that

Find a 2 x 2 matrix-valued function m®(z) =

1. m®(z) is continuous in C\ (Z? U {z o} with continuous boundary
values m(z) and m? (z) on = from the left and right, respectively.
2. mP(z) has the following asymptotics:

mP@)=I+0z™"), z- o zmP(z) = 0, +0(z), z-0.
(3.33)
3. m@(z) satisfies the following jump relation
m (@) =mP V),
where
* for j ea\A,
1 - (=2 T-2(2)
€ s lz- Zjl =/
0 1
1 (Hi’)_emul)T*Z(z)
< s |Z + zjl =P,
0 1
V(Z)(z) =
1 0
2 )20z s 2=zl =p,
SR g /
J
1 0
2it6(z s |z+z.|:p,
) e 1 /
J
(3.34)
s for jeV\ A
1 0
721t9(z) —Z. | =
_,Z_Z JT(z) nE lz=z;| =p,
s
1 0
7 o~200z)) , |z+z;| =p,
e — J T2(z) 1 J
2 J
V@(z) = 210z (3.35)
[ 2(Z) -
=z |z — Zjl =P,
0 1
21!9(z )
TP
5 |z + Z/| =p-
0 1
4. For ze C\ (Z®u {z;,)), we have:
omP(z) = m®P ()W (z), (3.36)
where
aB'(z) 0 IR’ QuUQ
z) = , ZEQLU
0 0 1 2
Wi(z) = (3.37)

aRze—ZttG 0

0 elsewhere.

N 0 0
Ba=. . zeQuQ,

5. If A = 0, then mP(z) is analytic in C \ (2 U Z®). If there exists
Jjo € {0,1,..., N — 1} such that |Rez;, — & < p, then mP(z) is
meromorphic in C\ (U =@) with four simple poles +z o
satisfying the following residue conditions:

and +Z o’
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. : R Py —2
(a) If j, €n, denoting G, = <, T'(z;,)~%, we have

2ir6(z; )
O — Tim @ Gl
Resz=zj0 m“(z) = Z1_1)an m“(z) s

Jo 0 0

0 0
Res._ (2) = i (2)
€8zmzy M (2) Z_}ll’r;jom (2) —CerZ"H(ZfO) ol
= 2if(z;)
R Oz = lim m® —Cie
es,—_; m7(z)=_lim m(z) ,
JO Z—)—Zjo 0 0
0 0
Res,_; m®(z) = lim m®(z)
z—=Z;

¢, e of
(3.38)

(®) If jo € V, denoting C; = cjoT(er))z’ we have

0 0
Res._ (2) = li (2)
€Sz=z;, M (2) . _1>rzrjl_0m (z) o ey o
Jo

-, 210Gz,
Res,._, mP(z)= lim mP(z) 0
Z: Z/() Z_)_Zjo 0
@ o o|° Cjpe )
Reszzfjo m“(z) = Zl_1>rzn m“(z) s
U 0 0
(2) (2) 0 0
Reszz_% m2) = Z—I}Erzljo meE G, WPy o)
Jo

(3.39)

4. The large-time asymptotic analysis
4.1. Asymptotics of N-soliton solution

We will neglect the 0 component of the solution, then the remaining
is a new RH problem with zero o-derivatives in Q. After that, the small
norm theory can be used to analyze the rest problem.

Proposition 4.1. Let m©°)(z) represent the new RH problem derived
by excluding the 0 component of RH Problem 3.2. Specifically, m**°(z)
is the solution to 9-RH Problem 3.2 with W = 0. For scattering data
{r(z), {zj.¢; }jfi 61 } in RH Problem 3.2, m““°)(z) is equivalent to RH Prob-
lem 2.1 with the modified reflectionless scattering data {0, {z;,¢;} /’\; 6' ).
Here, the modified connection coefficients ¢; are determined by

& =c;(x,1)exp <—$/Rlog(1 - |r(s)|2)(s_12. - %)ds).

J

(4.1)

Proof. When W = 0, the d-RH problem for m*°)(z) becomes a new
RH problem with jump contour X®. The next transformation aims to
map each circle in X® back to the corresponding poles. This is done
to ensure that 7(z) possesses simple poles at each +z, or +z, in Z.
Additionally, the transformation reverses the triangularity induced by
(3.4) and (3.13):

o3
m(z) = |:H (—|zk|2)] m(SOI)(Z)F(Z) |:H

kea kea

(z=z )z +Z) s
(zzp — D(zZ, + 1) - (42)

where
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 for j ea\A,

2it6(z)

QLT
i ) z—z;| <p,
0 1
|
Cj , lz+z <p,
0 1
F(z) = (4.3)
1 0
o\ -2ir0(z; s z—Zz;| <p,
G2 gy sh<r
j
1 0
oz , lz+z| <p,
_ Gz ’)TZ(z) 1 2zl <
¢
« for j e V\ A4,
1 0
—2it(z } s zZ—z;|<p,
e ZIO(I)TZ(Z) 1 | il <p
Z—Zj
1 0
- =2it0(z)) s |Z+Zj| < p,
_CJCHZ» / T2(z) 1
F(z) = e 4.4
c
1 772
= , z—Z;| <p,
0 1
. Zirﬁ(ij)
1 LT
ztz) s lz+z <p
0 1

+ Elsewhere, F(z) = I.

Note that there are some remarkable properties for m: (i) m keeps
the normalization conditions as z — 0 and z — oo; (ii) the jump
around the simple poles no longer exists; (iii) m satisfies the residue
conditions (2.52), with the modified connection coefficients E} There-
fore, we verified that m is the solution of RH Problem 2.1 with the
reflectionless scattering data {0, { zk,ék}sz ‘01}. The symmetry r(s~!) =
—r(s), s € R, gives the modified connection coefficients ¢ = z;l¢;l. In
a word, m®°)(z) is the solution of RH Problem 2.1, with a N-soliton,
reflectionless, potential g(x,t), and the discrete spectrum Z, but with
the modified connection coefficients ¢;. []

Proposition 4.2. Let ¢ = f and j, = jo(€) € {-1,0,1,..., N—1}. Assume
that m”(z) solves RH Problem 3.2 with W (z) = 0 and V® = I. Then there
exists an unique solution m*(z) to the above RH problem as follows:

* if jo(&) = —1, corresponding to A = @, then all the discrete eigenvalues
+z; are away from the critical lines. Moreover,

mh(z) =1 + %; (4.5)

if jo(&) € V, then
af“(x.r) _ o'ﬂjvn(x,t) ﬁf“(xJ) _ aﬁf” (x.0)

z-Z

Ziz/n “+ZJ() o “+ZJ()

ﬁj\u (x0) aﬁl‘o (x0)

z+Z;

A2 =T+ 2+
Z

av v
@ (x,1) _ ow (x.1)

ziz!() Z7Zm ‘+ZJU

v — i v
aj (.0 = —iz;, f;

12
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. 1
sin 9/-”(1 + tanh (,a/")(z sechgo/0 — 5 cos Bjn(l + tanh (pm))

Jo

c=
) s
1 2 2
[i}v G f) = (5(1 + tanh (p/") cos 0/" —sec Bj” sech(pm> + tan 91.” sech @),
0
i(1 + tanhg; )
R S— oc=1
sech(pju —2(1 + tanh (pfo)
(4.6)

where 0;, =argz; and when ¢ = 1, zj, #1 and when ¢ = 0, zj, =1

* lf Jo(f) €A, then aJAO (x.,1) &fA() (x,0) ﬁ_jAO (x,1) ﬂ/AO (x.1)

A _ () z—il»o Z+Z!0 Z_Z/[) z+2/0
M= T e Ben @en aenl|

Jo 7 T Jo T Tio

z—Zjo z+zl0 z2=2j, z+2j0

N P
ajo(x, 1) = lzjoﬂjo,

. = 1
sm0j0(1 — tanh (pjo)(zjosech(pjo — 5 cos 19]-0(1 — tanh (pjo))

Bl (x.1) = - :
%(1 — tanh (pjo) cos 6’/-0 —sec 0,-0 sech(pj0 ) + tan? 6’josech2(pj0

4.7)

In case 2 and 3, the real phase ¢; is given by

@, =2TImz; (x + (4Rez; )’ +2)t + x; ), (4.8)

1 . |ch| H (zj0 —zk)(zj0+2k)
X, = og =
Jo ZIsz-O Im Zj, ken ity (zjozk - 1)(zj0zk +1)
_ Imgz, / log(1 = [r())
T R |s— z/-o|2
Moreover, as z — co, we have the following asymptotics for m*(z)
—i+p, —op;
mh(z) =T+ 1 Lo T +0z™), (4.9
Z\ i+, —ob;, @ —oq

from which we can get the soliton solution

sol(zj , x = xj ,1) = Zlingoizmé‘l(z) =-1+ i(ﬂj0 - trﬁjo)
s 2
L 2 sin Hjosechq;jo(l +tanh<pj0)
) ,
1
(5(1 — tanh (pjo)cos 9/’0 — sec Bjosech(pjo) + tan? Gjosechz(pjo
as joev
B 1 + tanh @),
= seche;, — 2(1 + tanh q;jo)’
asoc=1
2
s 2 sin Ojosechqojo(l —tanh(pjo)
) s
(%(1 — tanh (pjo)cos Hjo — sec Ojosechcpjo) + tan? 49j0sech2qoj(J
as jo €a.

(4.10)

Proof. Owing to V = I and W = 0, we have that m*(z) is meromorphic
with simple poles at z = 0, *+z; and +Z; (as jo # -D. If A = @,
then (4.5) can be obtained directly from the asymptotic behavior of
RH Problem 3.2. If A # @, then there must be a j, € A, note that
Co = ¢;,T(z;,)* meets the condition Cy = z; |Cyl| as ¢;; = zl¢;, |-
If j, € V, then m”(z) coincides with the solution of RH Problem 2.1
with reflectionless scattering data, simple poles at 0, +z; and *z;,
and with connection coefficient C,. Then the symmetries (2.17) which
is also satisfied by m4, and the residue conditions (3.39) suggest that

v : aV
a’ =—iz; f) and 7 —a, _
Jo Jo ﬂ/u %jo Pig “%o_ _ﬂ"O
oy z-z; z-Z; z+2/0 z+zj)
mi(z)=1+ =+ L E) R
4 L %jo “by %o
Z—Zjo Z—ijo Z+210 Z+zj[)

13
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|Cj0|

2
62 Im EI (x+(4(Re z/o) +2)t)’

Under the notation e®/o = using the residue

ij
conditions (3.39), we can easiny obtain (4.6). If j, €4, the calculation

is similar, but with a«® =iz, f* and
Jo Jo" jo
%o Biy "4y Py
[+p) z-Z z—z z+z/0 z+2/0
mi@y=T+—=+| " " N|4] O
z Biy %o —biy “%o
z—ijo z=zj, z+zj, z+2/0

4.2. Small norm RH problem and estimate of errors

In this section, we will analyze a small norm RH problem.

Proposition 4.3. The jump matrix V®(z) has the following estimate
V() = Il pseory < ce™7. (4.11)

Proof. For [z—z;|=pand j € V\ A, we have

||V(2)(z) _ I||Lm();(2)) — _Z ijz‘ T(Z)Ze—zite(zl) < Cezrlmzj<§+4(Rezj)2+z) < ce’z”’z.
J
(4.12)
The others can be obtained in a similar manner. []
Define
m©(z) = mED(2ymA(z)7!, (4.13)

then m(°"")(z) satisfies the following RH problem:

RH Problem 4.1. Find a 2 x 2 matrix-valued function m®™"(z) such that

1. m)(z) is analytic in C\ =®, where @ is defined in (3.32).
2. m®)(z) has the following asymptotics:

me(Z) =1+0z™"), z- . (4.14)
3. ml®)(z) satisfies the following jump relation:

mfrr)(z) =m(Z)V e (z), ze 3, (4.15)

where the jump matrix is defined as

ven(z) = m' )V @ (@m(z)7!, (4.16)

and the jump contour is shown in Fig. 7.

The following proposition gives an estimate for the jump matrix
V(err).

Proposition 4.4. The jump matrix V°")(z) in (4.16) satisfies

IV (z) = Tl s < ™, 1<p<oo. (4.17)

Moreover, the solution of RH Problem 4.1 exists.

Proof. For z € @, we have

Ve (z) — 11 = ImA@)V () = DAz < eV @ = 1] < ce™.
(4.18)

According to Beals-Coifman theory, the jump matrix V(¢")(z) has the
trivial decomposition

ven(zy=(b_)'b,,  b_

I, b, =VEr(z),

so we can define

(w)_=I—-b_=0, (W), =b,—I=VED_],
w, = W,), + w,)_=Ven 1,
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Re(z
\ 0 H @
=z s /,’ Zx
e g
“Zjp te._. C} =T T
& )-
Fig. 7. The jump contour X® for m")(z) is the union of all circle lz—z| = p,
J€H\ {jo}
and
o/ = C(f(W,),) + Co(f(w,)) = C_(F Ve = D), (4.19)

where C_ is the Cauchy projection operator:

Cf)= lim —-— AW

2/ —>zex® 27l [y 5 — 2/

>

and ||C_||;2 is bounded. Then the solution of RH Problem 4.1 can be

expressed as

V(err) -7
m(err)(z) =I+ L ﬂe(s)( (S) )dS,

- (4.20)
271 Js@ s—2z

where u,(z) € L*(Z®) satisfies (1 — CyH(2) = I. Using (4.18) and
(4.19), we can obtain that

h2
ICuw, Nl L2z < ||C_||L2(z(2))||V(m)(7~) =1l Loy S ce 27, (4.21)

Hence, the resolvent operator (1 — Cwe)‘l exists. Consequently, u, and
the solution of RH Problem 4.1 m©")(z) exist. [

Proposition 4.5. Let & = %, then for any (x,t) in {(x, 1) :—6< Jt—‘ <=2 },
as t > 1, uniformly for z € C we have the estimate

mO(z) = mA (DI +OE ).

Especially, for z sufficiently large, we have the asymptotic extension
mtD(z) = mA ()T + 27 O + O], (4.22)

So we have the asymptotics of the potential
G DN (e, 1) = g () + O = sol(z,. x—x;, D+ 1+, (4.23)

where
YN (x, 1) = lim izm(;l(’l)(z), ¢ (x,) = lim izm?l (2).
Z—00 Z—00

Proof. From (4.20), we can split m"")(z) — I into two parts
(err) — — [)(Vern .
m(z) — I = L/ -1 Ids + L / (re() = I ©) )ds.
> >

2xi s—z Yt s—z

It follows that
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Im e (z) = I| < [V (s) = Tl 2 s,

S = Z||12(x)

+ ||V(err)(5) - ]“Loo(z(Z))“ﬂe(S) - ]“LZ(Z(Z)) 5_z

L2(2@)
97,2
<ce

Therefore, we have the estimate for m&°)(z)

(err) _
D (2) = mA(2) [1 + L / HOV )~ 1)
2

_ A —2p%t
- — s]—m(z)[[+(9(e ﬂ)].

As z — o0, m®"(z) has the following asymptotic extension

(err)
me(z) =1+ —— + 0™, (4.24)
Z
where
™ = _ﬁ / . 1o (5)VEN(5) = Dds
P
=—L [ wen(s) - nas— = / (e(s) = DV (5) = Dds,
271 Jxo 27i Jso

(4.25)

from which we have the following estimate

m"(2) S W@ =T + e =2V @ =Tz < e O

4.3. Andalysis on a pure o-problem

In this section, we use m“°)(z) to reduce m®(z) to a pure d-problem
and analyze it. Define the function

m(3)(z) — m(Z)(Z) (m(sol)(z))_l , (4.26)

then m®)(z) satisfies the following d-problem.

RH Problem 4.2. Find a 2 x 2 matrix-valued function m®(z) such that
1. m®(z) is andlytic in C \ @, and continuous in C.
2. m®(z) has the asymptotics:
mP(z)=T1+0E"", z- . (4.27)

3. For z € C, we have
am®(z) = M)W (z), (4.28)

where W®)(z) = mGD(2)W (z) (m(s"’)(z)f1 and W (z) is defined in
(3.37).

Proof. The definition (4.26) implies that m®(z) has no jump on the
circles |z + z;| = p nor |z + Z;| = p since

(n@) ™ m @) = meD @Y D2 (D) =1

The asymptotics (4.27) and d-derivative (4.28) can be obtained directly
from those of m@®(z) and m®°)(z). We just need to prove that m®
defined in (4.26) has no isolated singularities. At z = 0 we have
(mD(2)) ™" = (1 = 27271 (moD(2))”, then

@ (soh) (7)) T
(zm <z>)2z(nlz @) _, (4.29)
2

lim m®(z) = lim
z—0 z—0

which implies that z = 0 is not a singularity of m®(z). det m¢°)(z) =
1 — z72 indicates that z = +1 might be the potential singularities.
Applying the symmetries (2.49) to the expansion of m® and m®°), we
get for some constants ¢; and c,,

c Fic
mP@=( ! ") +oeF.
+e ¢

. T
(sol) -1 +1 Cy +1cy
(mD(z) " = D) < . +0O(1).

Fie, 6

14
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It then follows that
lim m®(z) = O(1), (4.30)
z—+1
which implies that m®)(z) has no singularities at z = +1. Now we are
going to prove that z; is not a singularity of m®. If m®(z) has pole at
zj, Jo EVNA, then we have the residue condition

Q= 1i (2)
Res;_. m7(z) = zl_l)rzr;O mE (N,

where
I 0 0
jo = Cjoezire(z W o)

so m® has the Laur%nt expansion

ResZ:Zj m
m®(z) = —Oc(z o) T 0z —z5),
2=z

where c(z; ,) is a constant matrix. It follows immediately that

Resz:z (2)(2) = C(ZJU)

which gives another form of expansion

m?(z) = c(z)) [ ] +0(z - z;,). (4.31)

Jo

Since m®°) and m® have the same residue conditions, owing to

det m@(z) = det m°(z) = 1 — z72, we have
2
1 z4 N
mo(z. ) =2 |r- 0 cz ) +0@z-z,). (4.32)
Jo 2 —_ . Jo Jo
Zjo ! 27 %0

Taking the above into (4.26), we have

22
m(3)(z) == Kl 1c(zjo) [I+
Jo

z7

N, N
2 ] [1— 2 ]c(zjo)r+(9(l), (4.33)
~Zjo z=2Zj

from which we can state that m®)(z) is bounded near the pole and the
pole is removable. We then give the o derivative of m®
om(z) = om® (m(s"”(z))_l =m?(z)dR? (m(ml)(z))_1

[m(z)(z) (m(s"’)(z))_l] [m(“”)(z)éR(z) (m(:ol)(z))_l] _ m(3)(Z)W(3).

where WO (z) = meD ()W (z) (moD(z)) . O

The solution of the pure d problem can be expressed as

/ / m® ()W (s)

— "V AAG®)
where d A(s) is the Lebesgue measure in R. And it can also be expressed
by operator equation

m®(z) = (4.34)

§—2z

I =DmP () =1 <= mD(z) =T +Im®(2),

where J is the Cauchy operator

3)
Jf(z)= —i / f(sin_/z = = fW ().

dA(s) = (4.35)

Then we will show that J is small-norm for large .

Proposition 4.6. We have J: L®(C) — L®(C)n C°(C) and for fixed
&y € (0,2) there exists a constant C = C(qy, &), such that for all t > 1 and
for all |& +4]| <&,

Il Lo ()= Lo () < cr/2, (4.36)
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Proof. Here we just consider the case when f(z) € L*(£2,). From
(4.35), we have

wO(s
TF@| < ellf o // WZON 4 ags),
c Is—z
where

2 —
WO < D)1 =572 W)l
For z € 2, there exists a C; such that

”m(sol)” <C 1+ |s|_1) = C1|S|_1<S>~

Then for a fixed constant c;, we have

(W) < er(s)s — 1|71 |aR, (s)[eReGHOE),
)

(4.37)

Since el = = 0O(1) in 2, we have the estimate

(S)laR (S)leRe(mtO(s))
@] < e // a4 = 1y + 1y + Iy
where

<5>|5R| (S)|€Re(2"9(s))l[o,1)

I = // dA(s),
/5 Is = zlls = 1]
(IR, ()] eReCHO)
I =/ ! 02 4 Acs),
2 s —zlls = 1]
(5)|OR, (5)]eReHO0D
I = / : L) g A(s),
2 s —zlls = 1]

where yo 1)(Is) + xp12)(Is]) + x[2,00)(I5]) is the partition of unity.

We first estimate I5. Since (s)|s — 117! < & for |s| > 2, for a fixed «,
we only need to prove that

-1/2
I < K// (el
Q
(4.38)

for some fixed ¢, and c. Let s = u + iv, since |£ + 4| < §, for &, € (0,2),
we have Re(2i10(s)) < —c'tv. Let z = zx +iz;, 1/g+1/p=1and p > 2.
For the integrals in (4.38) including f(|s|) = |F'(s)| or f(Is]) = @(|s]),
we can denote

oo , o
I3, i/ e* ’”du/
0 v

+ e | (s)] + Cz(P(|S|))eke(2irg))([1,w)(|s|)
Is -zl

dA(s) < ct'/?,

f(|5|))([1,oo)(|s|)du

s —z|
_ 1, )(|S|)
A T e ™ 4.39)
0 -z L2(v,00)
While
LoD | o +oo
2l </ </ N S—
572 ey Jv Is—zF T S (—zp)?+ (v —2)?
y= ’f i /+oo B e
|U—Zl| 1+y T o-z
and

|f<r>|2—“‘2u+”2dr

21;

DIy = [ 1OV ) /

<\V2 / @R < 1SR

(4.40)
Putting the above two estimates into (4.39), we then have
5 e—¢ 'tv L e~ ¢ o
Iy < ellf g, [ A \/__Udv+ \/U——_ZIdU:| . (4.41)
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Using the inequality ,/z e 21" < ¢r~'/2,~'/2, we can estimate the

r.h.s in (4.41)

!
7y _ w=". 1 Z e ¢ 1Zrw
€ 7 V=i - 1 _
dv dw < ct l/2/ —————dw< ',
0 4/z;—v 0 V1-w 0 Aw(l —w)
e—¢ 'tv L

— [ I
e—¢'tw _ ect/l _
—dv< dw=t 1/2/ di<ect'/2,
0

= Ve Vi

Subsequently, we have
Iy < et 2| £l 2w (4.42)

Then we estimate the terms in (4.38) including f(|s|) = |s|~'. Denote

© © Ao (IsDlsI ™/
I3 i/ e’”/’“dU/ AT g
0 0 [s -z

< / eic/m|||s|_1/2||Lp(u,m)|||s - Z|_l ||Lq(u,oo)dl)- (4.43)
0
Then for p > 2, we have
1/2 1/p=1/2 1/p 1/p=1/2
s =v —dx <cv s
1517 1oy = </1 T s
similarly, we have
s = 21l ooy < clo— 2,147, where 5 + i =1 (4.44)

Putting the above two estimates into (4.43) we have

21 PN & J
I, <c [/ e ¢ “’vl/"’l/zlv—z,ll/"'ldv+/ e~ wpl/p=12 1y — 7 | Ve gy |
0 2

(4.45)

Then we give the estimate for the r.h.s in (4.45)

o 1/p-1)2 Vet o _w=vlzr [
e v'/P o=z | dy=—ous=
0 0

—1z w _ - -
\z e w121 —w) Vi qw < e,
and

® o
_o! o - v=z,+w _o _ _
/ e=c/wyl/p l/2|v_z[|l/q Ldo / e 1GIT W (7, 4 ) /P12 101 gy
zy 0

™
T — _ 1y -
<@ ey V240 = ¢ 1/2/ y e Vdy < et V2.
0

Plugging the above two estimations into (4.45), we have

I3, < e\,

(4.46)
So far we have proved (4.38). Now we are going to estimate I,.

According to (3.23), for |s| < 2, we have |dR;(s)| <
(s) < \/5, so we have

e—Re(ZitG)}( (lsl)
I, < V3¢, // l—n'z)dA(s).
2 s—z|

It follows immediately from the estimate of I; that I, < ct~'/2, Finally,

¢ls = 1] and

(4.47)

we give the estimation of 7,. Let w = 1/z and = = 1/5, then we have

|a R |6R6(2"9(|T|)),1/

(7D
I =/ o) JT dA(r)
A e G (4.48)
|9R [RCHUD) 7y (12 '
[1,00)
= IWI// dA(2).
o lr-wle=1]

If |w| < 3, it is obvious that the estimate of I, becomes that of I,. While
if |w| > 3, we have
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|aR |eRe(2m9(\r|))I )(lrl)
1, <3 dA
= //MZ% — )
[OR, |eReGHOU) .y (I7])
+2 : dA(7).
//lsmg@ 1] ©

It can be estimated by the same method as before, so that I} < ct~!/2,
Then we have proved (4.36). [

We now show that the equation
m® =1+ Jm®
holds in the distributional sense. In fact, for test function ¢ € C(‘)’°((C, ©),
the differential equation
op(z) = f(2) (4.49)

has a solution
$) =L s fmy=1 // LW A w).
nz w Jlcz—w

Using (4.28) and (4.35), we have

// om® (w)p(w)d A(w) = // m® )W (w) [1 // mdA(z)] dA(w)
C C T Jlcz—w
=- // Im(2)d¢(z)d A(z) = // [T m®(2)]d(2)d A(2),

where we use the fact that the order of integration can be exchanged
mO W w)dg(z) 1

since —————2= ¢ L!(C). Therefore, in the distributional sense,

we have a[m(3> — Jm®] = 0, which means that m®(z) = I + Jm®(2).

Now we expand m®(z; x, ) as follows

<3)( 9
3) _ -1
mP(z;x,6) =1+ +0@z7h, (4.50)
where
m(IB)(X’ n= l//ma)(s)WO)(s)dA(S). (4.51)
T J/c

The following proposition gives the estimate for m(13)(x’ 1).

Proposition 4.7. For —6 < & < =2, there exist constants t; and ¢ such
that m(ls)(x, t) satisfies:

ImP 0l < et for |x/t+4] <2 and t>1,. (4.52)

Proof. Proposition 4.6 implies that for 7 > 1 and |£ + 4| < &), we have
M|« < c. Using (4.37) and (4.51), we have

SIGR, [eReird)
|m(13)(x,t)| < c/ L
2

o dA(s) < eI, + I, + I),
where

(4.53)

(s)|OR RO 11 (Is])
I = // ! OO 1 Acs),
Ql S — 1
() OR, |eReCD ) o (|s])
L= / ! 0D dAGs),
Ql Nl 1

s—1

DIIR, [RCD 1 (ls])
I = // (s)9Ry 2o 7 ACs).
2

For |s| > 2, using (s)|s — 11! = 0(1), and fixing a p > 2, q € (1,2), we
have

L<e // 1 (2] + oD + 1217 23R 1 (fsd AGs)
2

©
q
SC/ 1e™ ™I 2 pmax . L 1.0y @Y
0 L (max{v,ﬁ},oo)

o /
—c'tv
e [ gt

o
< C/ e—c’tv(t—l/ZU—l/Z +t_l/pU_1/p+l/q_l/2)dU < Ct_l.
0

o 121721 g epdv
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For s € [0,2], we have (s) < \/g Applying an approach similar to
the estimation of I;, we derive the inequality I, < ct~!, where the
difference lies in substituting |r'(|z])| + @(|s|) with the function f =
Z11.2(sD. For s € [0,1], variable transformations w = z~! and r = 57!
give that

I, =// REIGR (1w = 117" 1 0oy (0DIw| ™ dAGs) < er™.
2

So we have proved the estimate.

O

5. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. For sufficiently large z € C \ 2, we have
1

m(z) = T(eo)s m® @m0y [ - U o). G-
where
. 1
T, = sz 4ilmz - — /]R log(1 = () ")ds.
€A

Below we discuss the asymptotic behavior of ¢(x,7) as ¢ large under
different conditions.

1. If A =0, from (4.5), (4.22) and (4.50), we have
m(z) = I + LT(c0)" [62 +mPn - T + O(e"z"z’)] T(c0) ™.
Z
(5.2)

Using the reconstruction formula, we have the following asymp-
totics for g(x, 1)

gx,1)==14+0¢"). (5.3)
2. If A # @, we have
(sol)
m; (X, 1)
m(z) = I+ — +0(z72).
Plugging the above and (4.50) into (5.1), we have
m(z) = I + 1T (c0) [ e, 1) + m* (x, 1) = T3 1T (00) ™73,
4
Again, using the reconstruction formula, we then have
q(x,1) = lim izmy (z) = T(c0) 2PN (x,1) + O¢™). 5.4

Note that |z;| = 1 and Z;! = z. Then (3.7) gives us T(c0)™ = I,
which directly leads to the asymptotic stability

lg(x, 1) — g¥PN (x,1)] < et (5.5)

Next we show that the N-Soliton solutions for the mKdV equation
have the property of soliton resolution. Consider the order (1.4), and
the setsV = {j : j > jo}, a={j : j < jp}, and A =@ or {j,}. We could
rewrite the asymptotics of ¢©*°)-N (4.23) in terms of ¢/ (x, 1)
gODN (x,1) = g (x,1) + O,
which combining with (5.5) gives
(x, D=q" (e,1) = (q(x, 1) = WP N (e, )+ (¢0DN (1) = ¢ () = O,
Again by (4.23), we have
—x;, )+ 1+00"Y, j=0,...,N-1

q(x,1) = [sol(z;, x (5.6)

By (5.3) and (5.6), we get soliton resolution of the defocusing mKdV
equation
N-1
qg(x,t)=—-1+ Z [sol(z;,x = x;, ) + 1] + (9(t_1). O
j=0

(5.7)

Proof of Theorem 1.2. For g, close enough to ¢©*°’-M (x,0), using the
Lipschitz continuity (2.6)-(2.8) in Proposition 2.1, we can immediately
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get the relation of poles in (1.9). Then applying Theorem 1.1 to ¢g,, we
can obtain (1.7). Finally, simple calculations (1.7) give (1.10). [J
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